Publications
Journals
- Q. H. Cap, A. Fukuda, H. Iyatomi, “A Practical Framework for Unsupervised Structure Preservation Medical Image Enhancement,” Biomedical Signal Processing and Control (BSPC), 2024. [Link]
- Q. H. Cap, A. Fukuda, S. Kagiwada, H. Uga, N. Iwasaki, H. Iyatomi, “Towards Robust Plant Disease Diagnosis with Hard-sample Re-mining Strategy,” Computers and Electronics in Agriculture (COMPAG), 2023. [Link]
- Q. H. Cap, H. Tani, H. Uga, S. Kagiwada, H. Iyatomi, “LASSR: Effective Super-Resolution Method for Plant Disease Diagnosis,” Computers and Electronics in Agriculture (COMPAG), 2021. [Link]
- Q. H. Cap, H. Uga, S. Kagiwada, H. Iyatomi, “LeafGAN: An Effective Data Augmentation Method for Practical Plant Disease Diagnosis,” IEEE Transactions on Automation Science and Engineering (T-ASE), 2020. [Link]
- Q. H. Cap, K. Suwa, E. Fujita, H. Uga, S. Kagiwada, and H. Iyatomi, “An End-to-end Practical Plant Disease Diagnosis System for Wide-angle Cucumber Images,” International Journal of Engineering & Technology, vol. 7, no. 4.11, pp. 106–111, 2018. [Link]
Conferences
- Q. H. Cap, and A. Fukuda, “High-Quality Medical Image Generation from Free-hand Sketch,” Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC2024), Orlando, FL, 2024. [Link]
- S. Shibuya, Q. H. Cap, S. Nagasawa, S. Kagiwada, H. Uga, H. Iyatomi, “Validation of Prerequisites for Correct Performance Evaluation of Image-based Plant Disease Diagnosis using Reliable 221K Images Collected from Actual Fields,” AI for Agriculture and Food Systems, AAAI Workshops (AAAI2022), 2022. [Link]
- K. Odagiri, S. Shibuya, Q. H. Cap, H. Iyatomi, “Key area acquisition training for practical image-based plant disease diagnosis,” IEEE Colloquium on Signal Processing and its Applications (CSPA2022), Malaysia, 2022. [Link]
- Q. H. Cap, H. Iyatomi, A. Fukuda, “MIINet: An Image Quality Improvement Framework for Supporting Medical Diagnosis,” International Conference on Pattern Recognition Workshops (ICPRW2020), Milan, Italy, 2020. [Link]
- K. Obi, Q. H. Cap, N. Umegaki-Arao, M. Tanaka, H. Iyatomi, “Bulk Production Augmentation Towards Explainable Melanoma Diagnosis,” IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES2020), Langkawi, Malaysia, 2020. (Student Best Paper Award) [Link]
- S. Kanno, S. Nagasawa, Q. H. Cap, S. Shibuya, H. Uga, S. Kagiwada, H. Iyatomi, “PPIG: Productive and Pathogenic Image Generation for Plant Disease Diagnosis,” IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES2020), Langkawi, Malaysia, 2020. [Link]
- K. Suwa, Q. H. Cap, S. Kagiwada, H. Uga, H. Iyatomi, “A Comparable Study: Intrinsic Difficulties of Practical Plant Diagnosis from Wide-angle Images,” IEEE BigData Workshops (BigData2019), Los Angeles, CA, 2019. [Link]
- T. Saikawa, Q. H. Cap, S. Kagiwada, H. Uga, H. Iyatomi, “AOP: An Anti-overfitting Pretreatment for Practical Image-based Plant Diagnosis,” IEEE BigData Workshops (BigData2019), Los Angeles, CA, 2019. [Link]
- H. Okamoto, Q. H. Cap, T. Nomura, H. Iyatomi, J. Hashimoto, “Stochastic Gastric Image Augmentation for Cancer Detection from X-ray Images,” IEEE BigData Workshops (BigData2019), Los Angeles, CA, 2019. [Link]
- Q. H. Cap, H. Tani, H. Uga, S. Kagiwada, H. Iyatomi, “Super-Resolution for Practical Automated Plant Disease Diagnosis System,” The Annual Conference on Information Sciences and Systems (CISS2019), Maryland, USA, 2019. [Link]
- Q. H. Cap, K. Suwa, E. Fujita, S. Kagiwada, H. Uga, H. Iyatomi, “An End-To-End Practical Plant Disease Diagnosis System for Wide-Angle Cucumber Images,” International Symposium on Computational Intelligence & Applications (ISCIA2018), Langkawi, Malaysia, 2018. (Best Paper Award) [Link]
- H. Q. Cap, K. Suwa, E. Fujita, S. Kagiwada, H. Uga, H. Iyatomi, “A Deep Learning Approach for on-site Plant Leaf Detection,” IEEE Colloquium on Signal Processing and its Applications (CSPA2018), Penang, Malaysia, 2018. [Link]
- Q. H. Cap, E. Fujita, K. Suwa, S. Kagiwada, H. Uga, H. Iyatomi, “A Basic Study on Leaves Detection with Deep Learning Features,” Forum of Information Technology (FIT2017), Tokyo, 2017.
Teaching
Hosei University
YB039: Efficient Processing of Deep Learning [Winter 2022] [Winter 2023] [Winter 2024]